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Abstract China started to produce rare earth elements
(REEs) in the 1980s, and since the mid-1990s, it has become
the dominant producer. Rare earth element export quotas first
introduced by the Chinese government in the early 2000s were
severely reduced in 2010 and 2011. This led to strong
government-created disparity between prices within China
and the rest of the world. Industrialized countries identified
several REEs as strategic metals. Because of rapid price
increases of REE outside of China, we have witnessed a
world-scale REE exploration rush. The REE resources are
concentrated in carbonatite-related deposits, peralkaline igne-
ous rocks, pegmatites, monazite ± apatite veins, ion adsorp-
tion clays, placers, and some deep ocean sediments. REE
could also be derived as a by-product of phosphate fertilizer
production, U processing, mining of Ti-Zr-bearing placers,
and exploitation of Olympic Dam subtype iron oxide copper
gold (IOCG) deposits. Currently, REEs are produced mostly
from carbonatite-related deposits, but ion adsorption clay
deposits are an important source of heavy REE (HREE).
Small quantities of REE are derived from placer deposits
and one peralkaline intrusion-related deposit. The ideal REE
development targets would be located in a politically stable
jurisdiction with a pro-mining disposition such as Canada and
Australia. REE grade, HREE/light REE (LREE) ratio of the
mineralization, tonnage, mineralogy, and permissive metallur-
gy are some of the key technical factors that could be used to
screen potential development projects. As REEs are

considered strategic metals from economic, national security,
and environmental points of view, technical and economic
parameters alone are unlikely to be used in REE project
development decision-making. Recycling of REE is in its
infancy and unless legislated, in the short term, it is not
expected to contribute significantly to the supply of REE.
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Introduction

According to the International Union of Pure and Applied
Chemistry (Connelly et al. 2005), the term “rare earth ele-
ments” (REEs) encompass yttrium (Y), scandium (Sc), and
the lanthanides lanthanum (La), cerium (Ce), praseodymium
(Pr), neodymium (Nd), promethium (Pm), samarium (Sm),
europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium
(Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium
(Yb), and lutetium (Lu).

REEs are commonly subdivided into light (LREE) and
heavy (HREE) categories. Within the scientific community,
the boundary between HREE and LREE is based on the
electron configuration of individual REE. The term LREE
covers the La-Gd portion of the lanthanide series (atomic
numbers 57–64). Lanthanum has no 4f shell electrons, and
one clockwise-spinning electron is added to each subsequent
lanthanide until Gd (heaviest of LREE) is reached. The term
HREE covers the Tb-Lu portion of the lanthanide series
(atomic numbers 65–71) plus Y (atomic number 39).
Starting with Tb, one counter clockwise-spinning electron is
added to each subsequent lanthanide until Lu is reached.
Therefore, HREE differ from LREE by having “paired” (both
clockwise- and counter clockwise-spinning) electrons
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(Cordier 2011). Yttrium is grouped with HREE based on its
similar ionic radius and similar chemical properties. The prop-
erties of Sc are too different from the lanthanides to be
assigned to either HREE or LREE. Promethium (Pm) is a
radioactive element with a very short half-life, mainly pro-
duced in nuclear reactors; natural Pm is exceedingly scarce on
Earth.

The mining industry commonly assigns the term LREE to
cover lanthanides with an atomic number equal to or lesser
than 62 (La, Ce, Pr, Nd, Sm), and the term HREE includes
lanthanides with an atomic number of 63 or larger (Eu, Gd,
Tb, Dy, Ho, Er, Tm, Yb, Lu), plus Y. This practice started in
the mid-2000s to increase the apparent HREE/LREE ratio of
any ore, making it appear more attractive for potential inves-
tors. The expression “total rare earth oxides” (TREO) used in
ore reserve estimates refers to the sum of individual REO
concentrations including Y2O3 unless otherwise specified. It
is reported in weight percent (wt%).

Concentrations of individual LREE in the upper crust of
the Earth are comparable to those of base metals, and even the
least abundant REE (Lu) is about 200 times more abundant
than gold (Haxel et al. 2002). A large proportion of REEs are
present in low concentrations within the structure of rock-
forming minerals, in high concentrations in REE minerals that
are difficult to process, or in accessory minerals, which, by
definition, are present in low concentrations in common rocks.

China surpassed USA as the largest REE producer in the
mid-1990s. At that time, Chinese REE producers had a com-
petitive edge over western producers due to inexpensive and
abundant labor, low-energy costs, and lack of environmental
requirements (Folger 2011). It may be a coincidence that
export quotas and licensing for REE were introduced in
1999, during a period when the Chinese government was
enticing high technology companies to establish their new
production facilities in its country. The systematic reduction
in Chinese export quotas started in 2006 and the historic 40 %
reduction took place in 2010 (Wübbeke 2013). Chinese REE
production quotas came into effect in 2009. Temporary inter-
ruption of REE exports to Japan during the 2010 dispute over
maritime boundaries (Bradsher 2010; Areddy et al. 2010),
later officially denied by the Chinese government, highlighted
the vulnerability of western high technology industries to
disruptions of critical materials such as REE. The mainmotive
(be it economic, environmental, or social) of the Chinese
government behind the introduction of the export and produc-
tion quotas and new REE-related policies aiming to consoli-
date the Chinese REE industry is contested and open to
interpretation (Hayes-Labruto et al. 2013). Regardless of the
motive(s) behind REE export quotas and related policies, a
two-tier REE pricing system was established. As a result, in
April 2014, high technology plants operating in China benefit-
ed from a 40 % discount in La and Ce oxide prices, over 20 %
discount in Pr, Nd, Eu, and Dy oxide prices and 50 % or more

in Y and Sm oxide prices relative to export (free on board
China) prices (Els 2014), providing a powerful economic
advantage for REE-intensive manufacturing facilities operat-
ing in China.

The 2013 world production of REE, including Y, reported
in the form of oxides (REO) is estimated at 120,000 t (Fig. 1).
This estimate is based on published United States Geological
Survey (USGS) data (Gambogi 2014a,b) in combination with
an unpublished 2013 Roskill estimate for the Commonwealth
of Independent States. Although high technology industries
can substitute several REEs with other materials, these substi-
tutes are typically more expensive or less effective than the
REE they replace. A number of countries, including the USA,
consider several REEs essential for national security, their
economy, and the reduction of greenhouse gas emissions.
The forecasted demand for individual LREO is much higher
than that of HREO (Fig. 2). Dysprosium, Eu, Tb, Nd, and Y
are essential for the US and European economies and subject
to predicted supply disruptions (US Department of Energy
2010, 2011; European Commission 2010). Recent prices of
selected REE and REO are provided in Table 1. The prices of
REO reached an all time high during the summer of 2011,
since that time they were on the downturn; however, they are
starting to stabilize (Fig. 3). Such abrupt variations in prices of
specialty metals and some industrial minerals are common as
illustrated by the 2000 spike in Ta2O5 prices (Fig. 2, Mackay
and Simandl, this volume). The prices of LREOmay dip even
lower if the recent ruling of the World Trade Organization is
upheld (Syrett 2013a), if China eliminates or loosens export
quotas for REE to eliminate competition from deposits cur-
rently under development outside of China, if new
government-supported mines outside of China reach produc-
tion stage, or if efforts to reduce the use of REE in the
automotive industry (Syrett 2013b) are successful.

Current and future sources of REE

China started to produce REE in the 1980s, and since the mid-
1990s, it has become the dominant producer (Haxel et al.
2002). China controls the world REE market; however, small
quantities come from the Commonwealth of Independent
States (CIS), USA, Australia, India, Brazil, Malaysia, and a
few other countries (Fig. 1). REE export quotas established by
China favored high technology investment in China relative to
other parts of the world and led to rapid increases in the price
of REE outside of China (Simandl 2010). Most LREE pro-
duction in China comes from the Bayan Obo deposit in Inner
Mongolia. Bayan Obo is a carbonatite-related distal hydro-
thermal Fe-Nb-REE deposit. In 2008, it produced 60,000–
70,000 t of REO with a Fe co-product. A few carbonatite-
hosted deposits also contribute to LREE production but to a
much smaller extent (~15,000 t of REO). Ion adsorption clay
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deposits contribute significantly to LREE production and
represent a principal source of HREE (20,000–40,000 t of
total REO), but production is on the decline. There was
virtually no REE recycling prior to 2008 (Goonan 2011).
Recent examples of REE recycling-related research are de-
scribed by Anderson et al. (2012), Weltevreden et al. (2012),
Grabas et al. (2012), and Resende and Morais (2012). REE
recycling on the laboratory or small industrial scale takes
place in Europe and Japan; however, it could become more
viable if high prices, similar to those witnessed during 2011,
become the market norm, or if it becomes mandated by
governments.

According to recent USGS estimates (Gambogi 2014a, b),
world REEs including Y “reserves” (as defined by USGS) are
approximately 140 million t. Most of these “reserves” are
located in China, Brazil, USA, India, and Australia (Fig. 4).
The definition of ore reserves used by the USGS is not
compliant with the reporting standards mandated by the NI-
43-101 and Joint Ore Reserves Committee (JORC) codes.
Estimates of ore “reserves” by the USGSmay not even satisfy
the definition of “resources” under NI-43-101 and JORC

codes. Consequently, the importance of Canada and
Australia relative to the above-listed jurisdictions is probably
strongly underestimated.

More than 556 REE-oriented exploration projects were
active worldwide in 2012. Of these, 296 were grassroot pro-
jects (no drilling), 157 had limited drilling, 66 were at an
advanced exploration stage, 26 were at the pre-feasibility
stage, 7 were at the feasibility stage, and 4 operations were
under construction (Intierra 2012). Of the 54 projects covered
by announcements of new drilling results, 19 were located in
Canada and 12 in Australia (Intierra 2012). Most of the 63
advanced projects listed by TMR technologymetal research in
2014 are located in Canada (33 %), Australia (16 %), USA
(10 %), South Africa (8 %), and Greenland (8 %). The
remaining projects are located in Brazil, Malawi, Kenya,
Tanzania, Madagascar, Sweden, Mozambique, Kyrgyzstan,
Namibia, and Germany (Hatch 2014).

REE-bearing deposits

REE-bearing deposit types can be classified based on the
association between mineralization and host rock. In this
classification, deposits in which REE are the main (or princi-
pal) elements of economic interest are considered as primary
REE exploration targets. Where REEs are subordinate

Fig. 1 World rare earth oxide
(REO) production for 2013
subdivided according to
geographic location. Data from
Gambogi (2014a, b), unpublished
information from Roskill
Information Services regarding
the Commonwealth of
Independent States

Fig. 2 Forecasted 2014 demand for individual REOs (modified from
Watts 2010)

Table 1 Recent prices
of REE (metal) and REO
for export. All prices re-
ported in US$/kg, free on
board China for purity of
99.9 %. The exception is
the Y oxide, where the
minimum purity is
99.999 % (source of in-
formation: Asian Metal;
November 11, 2013)

Element Price ($US/kg)

Metal Oxide

Ce 11–14 6.5–7.5

Dy 650–700 490–540

Er 70–75

Eu 1,250–1,300 950–1,000

La 10–13 5.5–6.5

Nd 100–104 70–75

Pr 152–162 117–122

Sm 33–36 7.2–8.0

Tb 950–1,050 750–850

Y 61–66 23–25
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(possible co-product commodities), deposits represent sec-
ondary sources or secondary REE exploration targets
(Simandl et al. 2012b; Simandl 2010; 2012). These deposit
types can be divided into three categories. The first category
contains the deposits that are currently mined as principal
sources of REE. This includes carbonatite-related deposits,
ion adsorption clays, and placer deposits. The second category
comprises deposits that contributed to historical production of
REE such as monazite ± apatite veins, REE-bearing uranium
deposits, and phosphate rocks. The third category groups all
remaining deposit types.

Carbonatite and carbonatite–syenite complex-related deposits

Carbonatites are defined as carbonate-rich, intrusive, or extru-
sive igneous rocks that comprise more than 50 % carbonate
minerals (Woolley and Kempe 1989). However, some rocks

identified in the field as carbonatites may be of carbothermal
(formed from late low-temperature fluids derived from a
fractioned magma, dominated by CO2 but also containing F
and H2O) origin (Mitchel 2005). There are more than 527
carbonatite occurrences known worldwide (Wolley and
Kjasgaard 2008). Carbonatites and related syenites form
plugs, lopoliths, dikes, sills, cone sheets, or breccia zones
and are associated with fenitization (Na, K, Fe alteration) of
host rocks. They are commonly associated with major
faulting, rift valleys, and lithosphere doming in stable conti-
nental intra-plate settings (Woolley and Kempe 1989; Wolley
and Kjasgaard 2008); however, they are also known in conti-
nental plate margin settings. Many carbonatites are coeval
with syenitic or ultramafic rocks. Carbonatite and associated
alkaline rock-hosted deposits are known to contain economic
concentrations of Nb (±Ta), REE, and, in some cases, Fe, Sr,
Mo, Cu, U, Th, Ca, and Mg carbonates, fluorite, barite,
vermiculite, and apatite (Mariano 1989a,b; Richardson and
Birkett 1996a,b; Birkett and Simandl 1999).

Hogarth (1989) compiled a list of minerals reported in
carbonatites and many of these minerals are REE-bearing.
Some carbonatites contain spatially associated, discrete min-
eralized zones enriched in REE-bearing fluorocarbonate and/
or monazite that are of economic interest.

Most of the world’s LREE production comes from
bastnaesite- and monazite-bearing carbonatite-related de-
posits, such as Bayan Obo (Inner Mongolia), Maoniuping
(northern Panxi region), and bastnaesite-dominated (Fig. 5a)
Mountain Pass (USA). Information regarding carbonatites and
carbonatite-related REE deposits in China is summarized by
Yang and Woolley (2006) and Kynicky et al. (2012),

Fig. 3 Variation in prices of La,
Nd, and Eu oxides with time;
minimum grade 99 % REO, free
on board China, shipped in bulk.
Prices of Ce and Pr oxides follow
the same pattern as prices of La
and Nd oxides, respectively.
Since 2011, the decline in prices
of heavy lanthanides was
moderate relative to that of LREE.
Source of data: Anonymous
(2014)

Fig. 4 World REO includingY resources is estimated at 140,000,000 t. If
these estimates are correct (see text), most resources are located in China,
Brazil, and the USA (data from Gambogi 2014a, b)
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respectively. A number of carbonatite-related deposits outside
of China, besides Mountain Pass, also contain REE-enriched
zones and are being considered as potential sources of REE.
Ququarssuk, Tikiusaaq, and Sarfartoq are located in
Greenland (Sørensen and Kalvig 2011). In Canada, the Saint
Honoré carbonatite, a current Nb producer, contains signifi-
cant REE resources (total indicated and inferred resources of
531.4 million t grading 1.64 wt% TREO and 527.2 million t
grading 1.83 wt% TREO, respectively; Grenier and Tremblay
2013). Other Canadian carbonatite-associated REE deposits
that have received, or are receiving, serious attention are Eldor
(QC), Wicheeda Lake (BC), Montviel (QC), among others
(Simandl et al. 2012b, c).

Figure 5b displays the typical appearance of dolomitic
carbonatite. Carbonatite-related deposits are characterized by
enrichment in LREE (Fig. 6). Some REE-bearing carbonatite-
related deposits have been further enriched by surface
weathering. Examples of these deposits include Mount Weld
(Australia), Bear Lodge (USA), and Araxá (Brazil). The REEs
in weathering-enriched portions of carbonatites are commonly
fine-grained and texturally complex, displaying vertical min-
eralogical zonation (Mariano 1989b; Richardson and Birkett
1996b; Lottermoser 1990). Probably, the best documented

example of weathering-enriched carbonatite-related REE de-
posits is the Mount Weld carbonatite where the central lan-
thanide zone contains the main REE resource (Fig. 7; Duncan
and Willet 1990; Lottermoser 1990). Undeveloped,
weathering-enriched carbonatite zones have been historically
considered to be metallurgically challenging sources of REE
because of fine-grained (Lottermoser 1995) interlocking tex-
tures and zonation in mineralogy. The 2009–2011 rise in REO
prices opened up the possibility for extraction of REE directly
from “raw ore” without preconcentration; simultaneously, a
number of new metallurgical processing flow sheets were
developed to extract REE from weathering-enriched deposits.
Time will tell if newmetallurgical approaches will be success-
ful on an industrial scale and if these complex weathering-
enriched zones can be economically processed at current
(Table 1 and Fig. 3) and future REE prices over extended
periods of time.

Ion adsorption clay deposits

“Ion adsorption clay deposits” are weathered crusts that may
reach a depth of more than 20 m, developed by intense
biochemical weathering in hot and humid (subtropical)

Fig. 5 Examples of concentrate
and mineralization from selected
REE-bearing deposits. a
Bastnaesite concentrate from
Mountain Pass (USA) containing
65% total REO,millimetric paper
for scale. b Surface sample of
fracture controlled, REE
mineralization in carbonatite
(Wicheeda carbonatite complex,
BC). c Red-stained monazite and
apatite-rich mineralization
(Steenkampskraal vein, SA). d
Typical REE-bearing phosphate
rock; REEs are in honey brown-
colored francolite (BC). e
Eudialyte (red) from Kipawa
(QC). f Mosandrite (beige),
Kipawa deposit (QC)

Miner Deposita



Fig. 6 Typical chondrite-
normalized patterns of REE for
carbonatite-related deposits
(Bayan Obo, Inner Mongolia, and
Mountain Pass, CA). Peralkaline-
hosted HREE deposits (Kipawa,
Quebec) and ion adsorption clay
deposits (Xinxiu, Southern
China). Data from Saucier et al.
(2013), Castor and Hendrick
(2006), Yuan et al. (1992), and
Bao and Zhao (2008)

Fig. 7 Advanced REE
exploration projects; grade (REO
total)–tonnage plot; source:
publicly available NI-43-101
technical reports or related press
releases to March 2012. The
diagonal lines provide convenient
references for visual estimation of
REO tonnages in the ground
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climates. Most of the known examples are located in southern
China and supply the bulk of the world’s HREE requirements.
Ion adsorption clay deposits in China overlie, in most cases,
granitic rocks; however, the same deposit type may develop
over gabbros, basalts, and other rock types (Ruan and Tian
2008). They are reddish in color and unconsolidated to par-
tially consolidated (Wu et al. 1990; Bao and Zhao 2008).
Grades are strongly dependent on the mineral and chemical
composition of the protolith and vertical position within the
weathered crust. Unconfirmed reports suggest that ion adsorp-
tion clay-containing reserves in China are dwindling. Similar
deposits are located in areas with comparable climate and
bedrock geology, such as Laos, northern Vietnam, Thailand
(Sanematsu et al. 2009, 2011), and Madagascar.

Relative to monazite ± apatite veins, or carbonatite-and
peralkaline intrusion-related deposits, ion adsorption clay de-
posits are relatively low grade (Figs. 6 and 7), typically less
than 0.5 wt% TREO. Under favorable conditions, where a
very large proportion of REE are adsorbed to clay particles,
even grades as low as 0.05 wt%REO are of economic interest.
The distinction between REE adsorbed to clay particles and
REE in weathering-resistant accessory and rock-forming min-
erals is paramount for correct evaluation of these deposits.
Assuming the same total REE content and the same
HREE/LREE ratio, a deposit having a higher proportion of
clay-adsorbed REE to REE incorporated within a crystal
lattice is more economically attractive. These deposits are
economic because they are easy to mine and process. No
blasting or crushing is required, and the liberation of clay-
adsorbed REE may be achieved by in situ or heap leaching
using dilute sodium chloride or ammonium sulfate solutions
(Wu et al. 1990; Chi and Tian 2008). By western standards,
these operations have a large environmental footprint. Many
laterites that were historically evaluated as potential sources of
industrial clays, as raw materials for alumina production, or
ores of Ni or Al are being sampled as potential sources of
HREO and Sc. Additionally, “red mud” (bauxite waste from
the Bayer aluminum production process) contains significant
concentrations of REE. An extraction pilot plant is being
commissioned in Jamaica, known for red muds with the
highest REE concentration (Jamaica Observer 2013).

Placers (heavy mineral sands)

Placer deposits are defined as accumulations of valuable
heavy minerals liberated by weathering from primary ore
deposits or nonmineralized rocks, transported, and concentrat-
ed mainly through processes involving water and wind. Placer
classification is provided by Morison (1989), Garnett and
Bassett (2005), and Levson (1995a, b). Placers and
paleoplacers are sources of precious metals, uranium, zircon,
titanium oxides, Ta- and Nb-bearing minerals, REE minerals,
a variety of industrial minerals, and gemstones.

Zircon and REE minerals (primarily monazite and
xenotime) were recovered as by-products of Ti-oxide placer
operations in Australia until the late 1980s (O’Driscoll 1988).
At that time, regulations associated with high concentrations
of Th in placer monazite concentrates made bastnaesite and
other REE-fluorocarbonates more appealing. Australia’s re-
sources alone are estimated to be on the order of 5.2 to 7.4
million t of monazite (Mernagh and Miezitis 2008; Miezitis
and Hoatson 2012). Monazite can be concentrated by gravity,
magnetic, and electrostatic separation.

Monazite contains about 50–78 wt% TREO. Xenotime
[(YPO4)], also present in some deposits, contains 54–
65 wt% TREO. The Th content of monazite is variable and
in some cases may reach up to 30 wt%. Monazite-bearing
heavy mineral deposits in India, Sri Lanka, Australia, and
Egypt are described by Kumar (2011), Rupasinghe et al.
(1983), Bhadra Chaudhuri and Newesely (1993), O’Driscoll
(1988), and Hedrik andWaked (1989). Monazite concentrates
from Australian mineral sands typically contain between 5
and 10 wt% Th; however, placer monazites from tin-bearing
districts commonly have higher Eu and lower Th contents
(Rosemblum and Mossier 1983).

REE-bearing uranium deposits of the Blind River-Elliot
Lake area (ON), discussed elsewhere, originated as
paleoplacers (Roscoe 1996) and were significant sources of
REE (Goode 2012).

Monazite ± apatite veins

REE-rich, small to medium tonnage veins may represent
viable exploration targets even under 2013 REE market con-
ditions (Fig. 3). These deposits are typically hosted by
amphibolite- to granulite-grade metamorphic rocks. The
REE ore mineralogy of individual veins is commonly distinct.
Examples include Rareco’s historic 300-m-long and 2-m-wide
monazite-apatite-quartz Steenkampskraal vein (Fig. 5c) locat-
ed in South Africa (Andreoli et al. 1994) and Hoidas-type
deposits in Saskatchewan, Canada (Halpin 2010). The
Steenkampskraal vein, which contacts or cuts a granitoid
within a granulite-facies metamorphic terrane, was a historical
source of Th and REE (Andreoli et al. 1994). Rareco estimat-
ed that the Steenkampskraal deposit may have 117,500 t of
potentially recoverable resources remaining with an average
grade of 16.74 wt% total REE (Dalgliesh et al. 2011). A more
recent estimate for the mine area alone stands at 71,500 t at
23 wt% TREO and 95,800 t at 17 wt% TREO of indicated
and inferred resource categories, respectively (McKechnie
et al. 2012).

Several LREE-enriched veins, lenses, or dikes are known
in Saskatchewan, Canada. They were emplaced in shear zones
superimposed on deep-seated crustal discontinuities
(Normand et al. 2009; Rogers 2011). The JAK Zone at
Hoidas Lake is the best documented Canadian example. It
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extends over 750 m along strike, to a depth of 150 m, and is 3
to 12 m wide (Normand et al. 2009; Rogers 2011). The JAK
Zone contains a resource of 2,847,000 t grading approximate-
ly 2 wt% total REE (Great Western Minerals Group Ltd
2011a). REEs are contained largely in thorite and monazite
inclusions within fluorapatite and in allanite (Ce). Monazite,
bastnaesite, and chevkinite are minor constituents (Halpin
2010). The veins are enriched mainly in Ce and La and to
lesser extent in Nd and other REE, but the chemical compo-
sition and mineralogy differ for each vein generation.

REE as by-product of uranium mining

Yttrium has historically been extracted as a by-product of
uranium mining from uraniferous quartz pebble conglomer-
ates of the Blind River-Elliot Lake deposits (ON). This district
has produced 140,500 t of U from ores grading about
0.09 wt% U (Roscoe 1996). During processing of ores, large
volumes of nearly U-free Th- and REE-containing liquor were
produced. Rio AlgomMines and Denison Mines were able to
recover REE by solvent extraction (Lendrum and McCreedy
1976; Lucas and Ritcey 1975; Goode 2012). The Eco Ridge
deposit, located in the same area, is reported to contain indi-
cated mineral resources of 14.3 million t at 0.048 % U3O8 and
0.164 % TREO with inferred mineral resources totalling 33.1
million t at 0.043 % U3O8 and 0.132 % TREO. It is an
example of a currently active project belonging to this cate-
gory (Cox et al. 2011b). Uranothorite, thorite, brannerite,
coffinite, and unidentified uranium silicate are the main U-
and HREE-bearing minerals at Eco Ridge while monazite is
the main host to LREE (Cox et al. 2011b).

Several unconformity-related U deposits of the Athabasca
basin in Canada, including Key Lake, Cigar Lake, and
McArthur, contain significant concentrations of REE
(Jefferson and Delaney 2007). Uranium ore minerals in these
deposits contain up to 1.2 wt% total REE (Fayek and Kyser
1997) and substantial enrichment is reported along late oxida-
tion–reduction fronts (Mercadier et al. 2011). At least, one
major U-producing company was considering co-producing
REE at the time of high REE prices (2010–2011). The REE–U
association is also well documented in peralkaline granites at
Bokan Mountain (USA) and the Mary Kathleen U-REE de-
posit characterized by a skarn mineral assemblage
(Queensland) as described by Long et al. (2010) and Kwak
and Abeysinghe (1987), respectively.

Phosphate deposits

Phosphate deposits belong to two main categories: those that
are associated with carbonatites or peralkaline intrusions and
those that are of sedimentary origin. The geology of sedimen-
tary phosphate deposits is covered by Slansky (1986), Trappe
(1998), 1996), and Zhang et al. (2006) and summarized by

Simandl et al. (2012a). Sedimentary deposits are the
most important source of phosphate and in some cases
contain significant concentrations of lanthanides and Y
(Altschuler et al. 1967; Slansky 1986; Cook 1972; Simandl
et al. 2012a).

World phosphate rock production for 2009 was estimated
at 158 million t (Jasinski 2010). An average phosphorite
contains 461.7 ppm REE (Grosz et al. 1995), mostly
contained in francolite (Fig. 5d) crystal structure. Assuming
a typical phosphorite used in fertilizer manufacturing has the
same REE content, the amount of phosphate rock mined
annually could contain more than 70,000 t of REE. This
opportunity should not be overlooked; however, there are also
some truly exceptional REE-bearing phosphate deposits. A
good example is the Melovoye deposit on the Mangyshlak
Peninsula (Kazakhstan), where phosphatized bone detritus of
fossil fish in pyrite-bearing clays contains P, REE, U, and Sc.
The in situ U content of this deposit is 0.03–0.05 wt%; how-
ever, the bone detritus can be concentrated by washing, in-
creasing U content two to three times (Abakimov 1995).
Similarly, the TREO content of the washed bone detritus
may reach 1 wt% (Kochenov and Zimovieff in Altschuler
1973).

Khibina, on the Kola Peninsula, is an excellent example of
an igneous phosphate deposit (Kogarko 2012). Apatite from
this locality is reported to contain approximately 1 % TREO
(Zaitsev and Kogarko 2012). Commercial REE production
from phosphate rock (Habashi 1985), most likely apatite
concentrate, took place between 1965 and 1972 in Finland
by Kemira Oy.

Recovery of REE from phosphate rocks as by-products of
fertilizer production was considered by several companies in
the 1960s and 1970s, but historic market conditions were
unfavorable. REO prices approaching those of 2011 do justify
reevaluation of their recoverability as co-products of phospho-
ric acid.

Peralkaline rock-related deposits

Alkaline intrusions are characterized by their content of
feldspathoids, alkali amphiboles, and pyroxenes (Sørensen
1986). Based on molar ratios of [Na2O + K2O] relative to
Al2O3, they are subdivided into metaluminous or peralkaline
categories. In peralkaline intrusions: Na2O + K2O > Al2O3

(Marks et al. 2011). Peralkaline intrusions are agpaitic if their
agpaitic index ((Na + K)/Al) is greater than 1 (Salvi and
Williams-Jones 2004). Peralkaline intrusions, especially those
of agpaitic type, contain large deposits of Zr, Nb, Ta, Y,
HREE, Th, and Be (Richardson and Birkett 1996c). Several
of these deposits known in Canada (Simandl et al. 2012b),
Greenland (Sørensen and Kalvig 2011), the Kola Peninsula
(Kogarko 2012; Zaitsev and Kogarko 2012; Chakmouraudian
and Zaitsev 2012), and elsewhere have reached the advanced
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exploration stage. The REE mineralization is mainly present
within cumulate layers or within late pegmatite-textured
rocks, but it may be also present in REE-enriched dikes,
lenses, and veins cutting the intrusion.

The Lovozero massif in Russia, one of the largest agpaitic
intrusions in the world, is the only peralkaline intrusion-
hosted REE deposit currently in production. This deposit
contains loparite [(Ce,Na,Ca)2(Ti,Nb)2O6] and is therefore
preferentially enriched in LREE (Zaitsev and Kogarko 2012;
Kogarko et al. 2002). Current annual rate of production is
approximately 6,000 t of loparite concentrate grading 30–
35 wt% TREO, 8–12 wt% Nb2O5, and 0.6–0.8 wt% Ta2O5

(Zaijtsev and Kogarko 2012). The mineralized zone also
contains accessory apatite containing (5–6 wt% TREO) that
is not currently recovered. Eudialyte is also present within the
Lovozero intrusion. The metallurgy of the eudialyte zone has
been investigated; however, it is not presently being mined.

Kvanefjeld, Kringleme, and Motzfeld are some of the
better-known REE-Ta-Nb-Zr-bearing peralkaline intrusion-
hosted deposits in Greenland (Sørensen and Kalvig 2011).
The Nechalacho project near Thor Lake in the Northwest
Territories (Williams-Jones 2010; Möller and Williams-Jones
2013), the Strange Lake Complex on the border of Quebec
and Labrador (Kerr 2011; Boily and Williams-Jones 1994;
Salvi and Williams-Jones 2004), and the Kipawa deposits of
Quebec (Constantin and Fleury 2011; Saucier et al. 2013) are
the three best-known Canadian examples.

The following Canadian examples illustrate the degree of
variation in terms of available resource and mineralogy that
may be expected when comparing peralkaline intrusion-
hosted deposits. The Nechalacho REE-Zr-Nb-Ta deposit (for-
mally the Lake zone of the Thor Lake project, NWT) has
measured and indicated resources of 121.25 million t with
grades of 1.5 wt% TREO, 0.25 wt% HREO, 2.56 wt% ZrO2,
0.34 wt% Nb2O5, and 0.03 wt% Ta2O5 and inferred resource
of 183.37 million t grading 1.27 wt% TREO, 0.17 wt%
HREO, 2.37 wt% ZrO2, 0.33 wt% Nb2O5, and 0.02 wt%
Ta2O5 (Ciuculescu et al. 2013). The basal zone is enriched
in HREE relative to the upper zone. The host rock is a foyaite,
an aegirine-rich, medium to coarsely crystalline syenite con-
taining euhedral K-feldspar in trachytoidal flow textures
(Möller and Williams-Jones 2013). Allanite, monazite,
bastnaesite, and synchysite are the main LREE-bearing min-
erals. Yttrium, HREE, and Ta are found principally in
fergusonite; niobium in columbite; HREE and Zr in zircon;
and Ga in biotite, chlorite, and feldspar of albitized feldspathic
rocks (Cox et al. 2011a).

The Kipawa deposit, also known as the Sheffield deposit,
located in southwestern Quebec (Canada), is an example of a
mineralized peralkaline intrusion metamorphosed to upper
amphibolite grade. Metamorphosed peralkaline and associated
calc-silicate rocks and syenites strike NW–SE, dip shallowly
SW, and have a striking radiometric signature. In the 1980s, a

Zr–REE zone 10–30 m wide was traced along strike for more
than 1,300m (Alan 1992). Themain REE-bearingminerals are
eudialyte, yttrotitanite [(Ca,Y)TiSiO5], mosandrite group min-
erals [Na(Na,Ca)2(Ca,Ce,Y)4(Ti,Nb,Zr)(Si2O7)2(O,F)2F3], and
britholite [(Ce,Ca,Th,La,Nd)5(SiO4,PO4)3(OH,F)]. Vlasovite
[Na2ZrSi4O11], gittinsite [CaZrSi2O7], and eudialyte were his-
torically considered as a potential source of by-product Zr
(Camus and Laferrière 2010); however, this is no longer the
case (Saucier et al. 2013). Figure 5e, f shows spectacular
examples of metamorphosed mineralization from the Kipawa
deposit. Three vertically stacked co-planar mineralized zones
have been recognized within the syenite based on the dominant
ore mineral. They are referred to as eudialyte, mosandrite, and
britholite zones. Vlasovite and its alteration derivative gittinsite
are widespread throughout the deposit.

Peralkaline-related deposits are strongly enriched in HREE
relative to carbonatites as illustrated by Kipawa (Fig. 6). They
represent a main undeveloped resource of HREE. The miner-
alogy of these deposits is more complex than that of
carbonatites. Historically, metallurgical requirements have
prevented the development of peralkaline intrusion-hosted
REE deposits, with the exception of the LREE-enriched,
loparite-bearing deposit (described as nepheline-feldspar-
aegirine pegmatite containing loparite and eudialyte; Roskill
Information Services—unpublished data) at Lovozero. If met-
allurgical obstacles can be successfully overcome at reason-
able cost, future development of one of these deposits may
significantly reduce or eliminate world dependence on
Chinese ion adsorption clays as the main source of HREE
(Canadian Mining Journal 2013; Saucier et al. 2013; Quest
Rare Minerals Ltd 2013).

REE-bearing IOCG deposits

The term “iron oxide copper gold deposit” (IOCG) is loosely
defined. It covers a group of commonly sulfide-deficient
deposits containing low-Ti magnetite and/or hematite of hy-
drothermal origin forming breccias, veins, disseminations,
and massive lenses enriched in Cu, Au, Ag, U, P, Bi, Co,
Nb, and REE (Corriveau 2007; Ray and Lefebure 2000;
Williams et al. 2005). The best example showing significant
REE enrichment is Olympic Dam (Australia). It contains the
world's largest U resource (1.4 million t), the fourth largest
copper resource (42.7 million t), and the fourth or fifth largest
gold resource (55.1 million ounces) as reported by Corriveau
(2007). The breccia zone of the deposit contains 3,000–
5,000 ppm TREO and the central hematite-quartz zone is even
richer (Reynolds 2000). Bastnaesite, fluorencite, and
synchysite are the main REE-bearing minerals. Monazite,
xenotime, and HREE-bearing zircon have also been reported.
REE concentrations are positively correlated with the hematite
content of the host rocks, and higher values occur in hematite
breccias in the center of the deposit (Oreskes and Einaudi
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1990). Kwyjibo (Cu-REE-Mo-F-U-Au) and a few other oc-
currences in Quebec (Gauthier et al. 2004) are the best-known
Canadian REE-enriched IOCG occurrences.

Pegmatite/granite

Granitic pegmatites (e.g., Tanco, Canada) are major sources of
Ta, Li, Rb, Cs, Be, Sn, and industrial minerals (Sinclair 1996).
Most rare metal pegmatites belong to the Li-Cs-Ta (LCT)
family of pegmatites (Černý 1991a; b) and are derived from
granitic sources. Chemical evolution through the Li-rich
(LCT) pegmatite group is reflected by enrichment in volatiles,
increased fractionation, and increased complexity of pegma-
tite zoning. The complexity of zoning also increases with
distance from the granitic source (Trueman and Cerny 1982;
London 2008).

The niobium-yttrium-fluorine (NYF) family of pegmatites
(Černý 1991a; b) has higher REE contents than the LCT
family and is also enriched in Be, Ti, Sr, and Zr. NYF peg-
matites have an alkaline affinity and occur in the same
intracontinental rift settings as peralkaline- and carbonatite-
related mineralization (London 2008). Based on these charac-
teristics, NYF pegmatites are probably genetically equivalent
to late metasomatic phases of peralkaline intrusions character-
ized by pegmatitic textures, as described at Strange Lake
(Quebec–Labrador, Canada). The Strange Lake deposit is
commonly used as an example of a peralkaline intrusion-
related deposit (Richardson and Birkett 1996c), although it
has recently been described as a pegmatite (Linnen et al.
2012). Besides historic production required for research pur-
poses in Europe, the Platt mine (WY, USA) is the only
pegmatite that was mined primarily, and on an industrial scale,
for its REE content. Approximately, 10,000 t of euxenite ore
were recovered between 1956 and 1958 (Houston 1961) and
shipped to Japan for processing. Similarly, a pegmatite deposit
located 6 km east of Cooglegong Crossing (WA, Australia)
was exploited on a small scale in 1913 and 1930 and produced
approximately 2 t of gadolinite concentrate (Barrie 1965).

Skarns

Skarns are contact metamorphic or metasomatic zones formed
by mass and chemical transfer between igneous and adjacent
calcareous or dolomitic rocks. Typical skarn assemblages
consist of pyroxene, garnet, idocrase, wollastonite, actinolite,
magnetite, hematite, and epidote. Skarn deposits are sources
of Au, base metals, Fe, W, and a variety of industrial minerals.
Several skarns contain high concentrations of U and REEs
(Kwak and Abeysinghe 1987; Lentz 1991; Oliver et al. 1999;
Meinert et al. 2005). The REE-rich U deposit at the Mary
Kathleen mine (Queensland) contained 6 million t grading
0.1 wt% U2O3 and 2.6 wt% total REE (Kwak and
Abeysinghe 1987). The total REE grades ran as high as

7.6 wt% (Cruikshank et al. 1980). U was found in uraninite,
while REEs are present in allanite and to a much lesser extent
in stillwellite and andradite (Kwak and Abeysinghe 1987).
Recovery processes were investigated; however, REEs were
not recovered.

Greisens and related veins

Greisens and veins typically form near the contacts between
highly evolved peraluminous or metaluminous granitoids and
country rock, in the proximity of stocks and batholith cupolas.
Greisen deposits consist of cassiterite disseminations, veinlets,
stockworks, lenses, pipes, and breccia with a gangue of quartz,
mica, fluorite, and topaz. Veins are characterized by
wolframite-series minerals and cassiterite (±scheelite, molyb-
denite, bismuthinite, base metal sulfides, tetrahedrite, arseno-
pyrite, stannite, native bismuth, fluorite, and beryl). Typical
gangue minerals are quartz, muscovite, biotite, feldspar, tour-
maline, topaz, pyrite, and chlorite (Cox and Bagby 1986;
Reed 1986). Uranium, Th, and REE minerals are minor con-
stituents of these deposits. It remains to be determined if some
may contain REE in sufficient concentrations to be recovered
as a co-product (David Trueman, personal communication
2012).

Sandstone-hosted xenotime deposits

Several xenotime-rich sandstone-hosted occurrences are re-
ported within the Athabasca Group sedimentary rocks of
Athabasca Basin (Harper 1987). REE mineralization forms
lenses parallel to bedding within medium-grained, slightly
foliated, hematite-bearing sandstone. The xenotime is
interpreted to be of hydrothermal origin. Samples from the
Douglas River project (SK) contain up to 4.8 % P2O5, 4.9 %
Y, 9,100 ppm Dy, 2,990 ppm Er, 1,440 ppm Yb, and
2,150 ppm Tb (Great Western Minerals Group Ltd 2011b).
Other known and related occurrences belonging to this cate-
gory are located within the MAW REE zone that is character-
ized by breccia/conglomerate zones impregnated by tourma-
line and silicified (MacDougall 1990; Quirt et al. 1991).
Sandstone-hosted, xenotime-rich deposits are characterized
by a relatively high HREE/LREE ratio.

Manganese nodules, REE-bearing ocean muds

REE-enriched manganese nodules (Piper 1974; Elderfield
et al. 1981; Ohta et al. 1999; Hein et al. 2011; Zhang et al.
2012) and REE-bearing muds of the Pacific Ocean described
by Kato et al. (2011) contain significant REE resources.
Samples of these REE-bearing muds in the eastern South
Pacific contain 1,000 to 2,230 ppm total REE (Kato et al.
2011). These types of deposits are of particular interest to
governments of countries that do not have significant land-
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based REE resources, such as Japan and some of the countries
belonging to the European Union. The depths at which these
resources are located represent technological challenges.
Public sensitivities associated with the environmental impact
of mining on the seafloor, international laws, a recent decline
in REE prices (Fig. 3), and the high costs of specialized seabed
mining equipment represent additional challenges (Agarwal
et al. 2012; Bashir et al. 2012; Flentje et al. 2012).

Other deposit types

A review of compilation studies by governmental organiza-
tions worldwide, including the USA (Long et al. 2010),
Australia (Hoatson et al. 2011), Canada (Simandl 2010;
Simandl et al. 2012a, b, c), and Greenland (Sørensen and
Kalvig 2011) clearly indicate that most REE-bearing deposits
neatly fit into the deposit categories discussed above; howev-
er, new potential sources are in the process of being identified,
and these new deposit types may not fit into these categories.
For example, REEs are also present in significant concentra-
tions in clay deposits that are being developed as sources of
metallurgical-grade alumina. Orbite Aluminae Inc. plans to
recover REE as a co-product of high purity alumina from its
Grande-Vallée deposit in Canada (Levaque 2011; Doran et al.
2012).

The Athabasca oil sands in Canada represent an important
source of petroleum. They also contain a significant low-grade
resource of zircon and titanium-bearing minerals (Majid et al.
1988; Kaminsky et al. 2008). Progress is being reported
toward the recovery of these minerals during bitumen pro-
cessing. REO concentrations are not reported, but monazite is
present in these deposits (Kaminsky 2008).

Technical, economic, and political considerations

Advanced projects outside of China show extreme variation in
REO grade and deposit size. Figure 7 indicates available REE
resources but ignores potential co-products such as Zr, Hf, Nb,
P, F, U, etc. The recovery of these potential co-products needs
to be considered when comparing individual projects. At least
16 of 25 REE projects worldwide are projected to be in
production by 2016 (Watts 2012). Combined, they represent
about 200,000 t of new REO production capacity outside of
China. It is unlikely that all 16 will reach production stage.

The mineralogy of REE deposits, and by extension the
relative cost-effectiveness of corresponding metallurgy, is ex-
tremely varied. Mineralogy needs to be considered during the
early screening of exploration projects. As a rule of thumb,
REE-bearing carbonates and fluorocarbonates are easy to deal
with using conventional methods. The best example of an

operation that relies on bastnaesite [(Ce, La)(CO3)F] is the
Mountain Pass mine (USA).

Deposits containing REE phosphates, mainly monazite
group minerals [(La,Ce,Nd,Th)PO4], have higher Th content.
Radiation-related precautions may be required during mining,
processing, transport of the concentrate, and waste disposal.
Therefore, monazite-rich deposits are considered more diffi-
cult to permit than deposits consisting predominantly of REE-
fluorocarbonates. Commercial nuclear reactors run on U but
Th is seen by some as a safer and cleaner fuel. China, India,
France, and Norway are pursuing Th-based nuclear fuel pro-
grams (Martin 2011). Commercialization of Th-based tech-
nology would make monazite an ideal REE ore mineral.
Classical examples of past monazite-based operations are the
Steenkampskraal vein (South Africa) and placer deposits in
Australia.

Uranium ore minerals such as brannerite [(U,Ca,Ce)(Ti,
Fe)2O6], and to a lesser extent uraninite [UO2] (including its
massive form commonly referred to as pitchblende), and a
variety of other U-bearing minerals may contain potentially
recoverable REE. The brannerite-bearing uranium deposits of
the Blind River–Elliot Lake area are excellent examples of
successful historical co-production of U and REE (Goode
2012).

REE-bearing silicates (e.g., allanite, [(Ce,Ca,Y)2(Al,
Fe3+)3(SiO4)3(OH)] ) are reported from some pegmatites,
granites, gneisses, veins, and skarns.

Peralkaline intrusion-related deposits have been rec-
ognized as an REE resource for many years. An inabil-
ity to commercially extract REE from eudialyte
[Na4(Ca,Ce)2(Fe

2+,Mn2+)ZrSi8O22(OH,Cl)2] and other
complex and exotic minerals (with the exception of loparite
[(Ce,Na,Ca)2(Ti,Nb)2O6]) historically prevented their devel-
opment. Recent press releases from several junior exploration
companies suggest that significant progress in REE extraction
from eudialyte and other complex REE-bearing minerals has
been achieved (Canadian Mining Journal 2013; Saucier et al.
2013; Quest Rare Minerals Ltd 2013). Mineralogical and
metallurgical tests are fundamental for establishing relative
development potential of individual peralkaline intrusion-
related deposits.

REEs are currently considered as critical metals by the
European Commission, USA and Japanese governments, oth-
er governmental and paragovernmental organizations, and
major industrial REE users. Continent- or country-specific
efforts of these organizations to secure supplies of REE in
their own jurisdiction (e.g., strategy to secure REE from
Greenland; Pieterse 2013) may conceivably result in develop-
ment of deposits with low to moderate technical/economic
rankings relative to highly ranked deposits also located out-
side of China. While the impact of current policies of the
Chinese government on REE markets can be reasonably pre-
dicted, such policies are subject to unexpected changes.
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Political maneuvering aiming to guarantee the availability of
REE at reasonable price within the European Economic
Community, USA, and other countries adds an extra layer of
complexity to REE market forecasting.

Summary

Potential REE resources are present and plentiful on most
continents and on the ocean floors. The global REE market
is dominated by China, and REE prices are influenced by
Chinese export quotas. Since 2011, the general trend in REE
prices is downward; however, the prices are starting to stabi-
lize. Several REE-bearing deposit types are potential sources
of REE; however, as the prices of REE are stabilizing at levels
well below the all-time highs reached during the summer of
2011, carbonatite-related deposits and high-grade REE-bear-
ing veins are again becoming the preferred LREE develop-
ment targets. Exploration for REE-bearing ion adsorption clay
deposits outside of China and development of cost-effective
metallurgical processes to extract REE from peralkaline
intrusion-related deposits aim to eliminate world dependence
on Chinese HREE exports. A combination of technical, envi-
ronmental, economic, and political parameters will determine
which deposit types (or specific deposits) outside of China
will be developed during the next decade.
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